OPC UA Business Value

Bill Lydon

Chairman of PLCopen North America

PLCopen

for efficiency in automation

Editor of Automation.com & InTech Magazine

Automation Consultant

Bill Lydon Background

Hardware & Software Design

Entrepreneur

Controls & Automation

Applications

Business

- Customer Responsiveness
- Profits
- Order Synchronization
- Supply Chain Synchronization
- Work In Process Tracking
- Genealogy & Traceability (TnT)
- WEB Visibility
- Compliance Documentation
- Paperless Systems
- Investment Justification?

Manufacturing systems NOT advancing at the rate of other business systems.

Cumbersome & Slow Architecture

MES/Historians/HMI

Multiple Databases

Historians, Batch Records, LIMs etc. **DUPLICATION**

Local HMIs

Automated Controls

Crude Data

Non-Standard Low Refinement Poor Syntax No Context

Hardwired, Proprietary; Semi Proprietary

Low Quality Data Sources

Sensor/Actuators

Cumbersome & Slow Architecture

- Duplicated Data
- Multiple Layers
- Throughput Bottlenecks
- Communication Translators
- Complicated Routing
- Low COTS Adoption
- Configuration Control Challenges
- Holding back innovation
- Holding back productivity

LUCAI IIIVIIN

 \mathbf{RP}

Multiple Databases

Historians, Batch Records, LIMs etc. **DUPLICATION**

Automated Controls

Crude Data
Non-Standard
Low Refinement
Poor Syntax

Hardwired, Proprietary; Semi Proprietary

Low Quality Data Sources

Complicated & creates a great deal of cost, ongoing configuration control and lifecycle investment.

Industry 4.0 • Smart Factory • Industrial Internet Manufacturing IoT • Intelligent Manufacturing

Striving for Manufacturing Success Creative & Innovative Automation

Low labor cost is not a winning manufacturing strategy...

The Big Ideas: Real-time Digital Factory continuous real-time business optimization

Synchronize: Customer, Supply Chain; Manufacturing **Make to Order Manufacturing Increase Factory Throughput Increase Quality Frictionless Communication Reduce Application Engineering Time** Simplify Enterprise Software Interfaces

Precision & Efficiency

Increased Computing & Communications

Increased Computing & Communications

Macro Level

Processes, Machines & Plants

Micro Level

Drives, Motor Controls, Sensors, Actuators Etc...

Embedded Computing - Sensors, Actuators, Pumps, Flow Sensors, ...

Control & Automation Driving to the Edge

"the internet of things"

32/64 bit CPUs, Integrated Communication (Wired & Wireless), Embedded Real-time Operating System, Web Server, Email, Web Services

Analytics

Methods Understood - Model Based Control * Model Free * Self Learning **Limiting Factors** – Processing Power, Communications, & Weak Software Platforms

Wider Application Possibilities

Machine • Multi-Process • Multi-plant • Supply Chain • Energy

Analytics

Methods Understood - Model Based Control * Model Free * Self Learning Limiting Factors – Processing Power, Communications, & Weak Software Platforms

Wider Application Possibilities

Machine • Multi-Process • Multi-plant • Supply Chain • Energy

Macro Level

Processes, Machines & Plants

Micro Level

Drives, Controls, Sensors, Actuators, Etc...

Embedded Computing - Sensors , Actuators, Pumps, Flow Sensors, ...

Control & Automation Driving to the Edge

Refinement • Analytics • Web Server • Email • Web Services • OPC UA

Lean & Responsive Architecture

Open Standards Deliver Interoperability Device to Device and Device to the Enterprise

- ISA-95
- ISA-88
- B2MML
- IEC 61131
- MTConnect
- PackML
- OPC UA
- OPC UA ADI
- OPC UA WITSML

IEC 61131-3 Global Standard

- IEC = International Electrotechnical Commission
- Founded in 1906 Over 50 participating countries
- Common Industrial Control Programming Standard

PLCopen

- Founded in 1992 Worldwide
- Vendor Independent Not for Profit
- Focus Open Architecture Controls Programming

Open Controls Programming Standards

STRONG DATA TYPES

Ladder Diagram (LD)

Function Block Diagram (FBD)

Sequential Function Chart (SFC)

Structured Text (ST)

Instruction List (IL)

• XML Interchange Standard

- Transparent Access
- Transparent Communication

Controller-to-Controller Communication

Goal: to define a set of FBs for UA Client communication

Basis for Machine-to-Machine communication

Lean & Responsive Architecture

The Big Idea: Real-time Digital Factory continuous real-time business optimization

Synchronize: Customer, Supply Chain; Manufacturing **Make to Order Manufacturing Increase Factory Throughput Increase Quality Frictionless Communication Reduce Application Engineering Time** Simplify Enterprise Software Interfaces

Precision & Efficiency

OPC & PLCopen Improves Utility & Life Cycle Cost

OPC & PLCopen Improves Utility & Life Cycle Cost

Open Standards Simplify Automation (Just as it has in other applications.)

OPC & PLCopen

Building Automation

Mapping between BACnet and OPC-UA Building Automation Function Block Libraries

Use Case: Building Automation

Microsoft Headquarters, Munich, Germany

- Standard IEC 61131 Programming
- 230 Beckhoff BC9000 Controllers
- HMI: Webpage/Internet Explorer
- Ethernet TCP/IP I/O
- 27,500 I/O Points
- Room Control via Internet

OPC UA Business Value Building Blocks Real-time Digital Factory continuous real-time business optimization

Bill Lydon

- Chairman of PLCopen North America
- Editor of Automation.com & InTech Magazine
- Automation Consultant

bill@automationfocus.com

414-704-5004

