
Keys To Developing an Embedded UA Server

	 Liam Power, Embedded OPC UA Subject Matter Expert
	 Darek Kominek, P.Eng, MatrikonOPC Marketing Manager
	 Edmonton, Alberta, Canada - 2013

Strong demand for improved access to shop-floor data
is driving control automation vendors to make their
devices as easy to integrate as possible. Embedded
OPC UA presents tremendous opportunities for device
vendors to make their products stand out with native
open data connectivity that is more secure, easier to
integrate in multi-vendor environments, and opens door
to new markets due to the widespread use of OPC. This
paper discusses the key challenges device vendors must
overcome to successfully harness this breakthrough but
complex technology.

Executive Summary

SHORT OPC BACKGROUND

OPC, the world’s most popular standard for open automation data connectivity,
is really a series of specifications that define how automation data can be
shared between controllers, sensors, applications, and virtually all networked
devices. Of these specifications, the most common one is OPC Data Access
(DA) which deals with real-time data transfer followed by OPC Historical Data
Access (OPC HDA) and OPC Alarms & Events (OPC A&E) dealing with the
transfer of historical and alarm and event data respectively.

First released in 1996, the original OPC standard relied on proprietary Microsoft
Windows technology (COM/DCOM) to provide application level security and
data transport between OPC clients and OPC servers. Relying on the Microsoft
technology simplified OPC client/server development by having the Windows
operating system take care of all the low level details but came at a price:
OPC technology only ran on Windows based systems and provided very little
visibility and control over communication parameters (ex. timeout durations).
The first limitation effectively shut out the chance to allow most devices,
controllers, and non-Windows based systems in general from supporting OPC
natively, on board. The second limitation created a lot of headaches between
IT and Operations departments due to DCOM related issues.

Limitations of traditional PC-only based connectivity
While the first generation of OPC Servers brought open connectivity to control
automation, the OPC Servers had to run on Windows based PCs and often
relied on device drivers (also running on PCs) to communicate with each
device on the shop floor. This typically meant that multiple physical layers and
protocols had to be set up and maintained for data connectivity to function.
Physical layers such as RS485, CAN, and Industrial Ethernet are some common
examples with protocols like Modbus, PROFIBUS, and DeviceNet sitting atop
them. The OPC Servers exposed the process data as OPC tags or data points.
This was incredibly successful but is not without its limitations.

One such limitation is that typically an OPC tag must be manually created by
a commissioning engineer. This is necessary because the protocol used to talk
to the device is not OPC and we have to figure out how to map the process
variable from the device protocol to an OPC tag. This commissioning effort is
labour intensive and like any manual operation is prone to errors.

Another limitation is that many of the device protocols in use are insecure.
MODBUS TCP for example is in widespread use on Industrial Ethernet networks
and is completely insecure. As well as eavesdropping on process activity,
for devices incorporating outputs, this potentially exposes the process to
unauthorized actuation where the network boundary has been compromised by
an attacker.

In most cases aggregating device communications through a dedicated OPC
Server makes sense. It provides an efficient network architecture while
facilitating logging of historical data at a central point. There are some cases
however where it does not. What if you just want to get a single tag into a
visualization client from a field device in a standalone installation? In many
cases Windows based OPC Servers are introduced into a plant for this purpose
where they are complete overkill for the simple need that exists.

Figure 1: PC-only based connectivity.

“The OPC servers exposed the

process data as OPC tags or

data points. This was incredibly

successful but is not without its

limitations. One such limitation

is that typically an OPC tag

must be manually created by a

commissioning engineer. This

commissioning effort is labor

intensive and prone to errors.

Another limitation is that many

of the device protocols in use

are insecure.”

MESHMI
Application
OPC Client

Serial Fieldbus
to OPC Server

Serial Fieldbus
Micro PLC

Sensors

Sensors

Industrial Ethernet
to OPC Server

Industrial Etheret
I/O Block

Sensors

Sensors

INTRODUCING OPC UA

OPC UA (Unified Architecture) is the OPC Foundation’s next generation of OPC
standards. Learning from past successes and challenges as well as the evolved
needs of modern control automation environments the OPC Foundation stayed
true to the original vendor-neutral data connectivity philosophy but redefined
and upgraded the flexibility, power, and security of the entire OPC model.
Rapidly gaining traction in many industrial spaces outside of process control
(ex. building automation), OPC UA was designed from the ground up to be
platform and OS independent – enabling seamless communication between all
components of an automation system and the enterprise.

Thanks to OPC UA’s flexibility, OPC UA applications can be developed for non
Windows platforms such as Linux and for embedded systems running an RTOS
(Real Time Operating System) or even “bare metal” environments where there
is no operating system. OPC UA can even be embedded in microcontrollers
costing less than $5.

THE NEXT STEP: EMBEDDED OPC UA

Why embed an OPC UA server in a device? In a word: simplicity. For end
users, the holy grail of data connectivity is finding the easiest, most efficient
and cost effective way to access their data when and where they need it – all
without adding additional PCs and performing additional configurations and
maintenance. Having OPC UA run natively (embedded) right on the devices
themselves makes good sense.

Advantages of going Embedded
If you embedded an OPC Server directly in the device you can create an
optimal solution for almost every application. Because the OPC tags are
natively present in the device, the commissioning engineer simply has to point
and click to choose the OPC tags he wants to visualize or log. Because the
network is using OPC from end to end there is no need to manually create
OPC tags and map process variables from other protocols. This greatly reduces
commissioning time and reduces the potential for error.

Because OPC UA communications can be authenticated and encrypted
the installation has the potential to be more difficult for an attacker to
compromise. Simply getting inside the network boundary is not sufficient to
carry out an attack on a process.

While the data from embedded UA Servers would typically be routed via a
central server or redundant servers there is always the option to connect to the
device directly if required. This provides many options for device configuration
& management as well as cost reductions for very small installations.

Finally, OPC UA is more than an industrial automation protocol. It also contains
an extensible information model that makes it very attractive to many vertical
markets. Adding OPC UA support to your device offers the potential to open up
new markets for your product.

“Why embed an OPC UA

server in a device? In a word:

simplicity.”

MESHMI
OPC Client

Application Server

Sensors Sensors

Sensors OPC UA Embedded
Sensors

OPC UA
Micro PLC

Figure 2: Embedded OPC UA connectivity

OVERCOMING KEY EMBEDDED UA DEVELOPMENT
CHALLENGES

There are many benefits to embedding an OPC UA server in your product.
Whether you realize these benefits or not however, depends on how well you
address five key development challenges which we will look at in this section.
They are:

1. Development cost and time to market

The Issue: OPC UA is a large set of specifications spanning more than 13
documents and 1000 pages. The standard specifies many aspects including
transport protocols, security, services, information models, profiles and others.
The first question a design team needs to ask when considering embedding
OPC UA connectivity in their product is how long development will take and
what is the risk?

Attempting to implement an OPC UA embedded server in a microcontroller
based product from first principles is a major undertaking – one that is not
recommended when you are also racing to get your product out to market.
Why? Because it takes man years of effort and even then, the product quality,
delivery date, and overall project success cannot be reliably estimated.

The Solution: In the majority of cases the only sensible course of action is
the use of a commercial Software Development Kit (SDK).

MatrikonOPC offers the only OPC UA Embedded Server SDK specifically
targeting resource constrained platforms such as microcontrollers. The SDK
and its associated protocol stack were completely implemented from first
principles to be a best in class solution for this application area. The SDK hides
almost all of the complexity of the standard from the application developer
enabling rapid application development. It is not unusual for prototype UA
Servers to be integrated into an existing product by a customer’s software
engineer in less than one day. It is important to be aware that not all ‘OPC UA
Embedded Server SDKs’ are created equal.

2. Footprint Size

The Issue: If you are designing a new product you want to keep cost,
complexity, form factor and power consumption to a minimum in order to
maximize your return on investment while delivering value to your customers.
If you have an existing product you want to enhance with OPC UA connectivity
- you are constrained by the existing onboard hardware. There is only so much
Flash and RAM available for the additional OPC UA server functionality. If
your implementation does not fit - you cannot complete the development. For
these reasons it’s important to use an OPC UA implementation that minimizes
memory utilization to ensure a successful development.

The Solution: Using an OPC UA Embedded Server SDK takes the guess
work out of trying to determine how many of your limited memory resources
the resulting OPC UA embedded server will require because that is largely
predetermined.

For example, the OPC UA Embedded Server SDK from MatrikonOPC has the
smallest footprint in the industry. With a Flash footprint starting at 240kB and
RAM footprint starting at 35kB the server easily fits into the internal memory
of a low cost microcontroller.

Figure 3: 5 Key Embedded UA Development Challenges

“MatrikonOPC Offers the only

OPC UA Embedded Server SDK

specifically targeting resource

constrained platforms such

as microcontrollers. It has

the smallest footprint in the

industry. ”

5 Key
Challenges

1
Time & Cost

to Go to
Market

2
Footprint

Size

4
Ease of

Integration

5
Quality,

Robustness
& Reliability

3
Optimization:

CPU
Utilization

3. CPU Utilization

The Issue: Similar to memory footprint it is critical that an OPC UA
Server does not swamp the product’s CPU which could cause the device to
malfunction or become unresponsive. After all, a typical industrial electronic
device’s CPU does a lot more than just perform communications. A new design
will want to minimize BOM (Bill of Materials) cost while an existing design will
have a fixed amount of CPU bandwidth available for communications. As with
footprint, if the solution is too resource intensive it cannot be used.

The Solution: MatrikonOPC’s SDK has an extremely efficient internal
architecture designed to minimize CPU utilization. Typical applications on an
ARM microcontroller can be implemented using less than 10% of the CPU
bandwidth. SDK performance scales predictably according to the number of
tags to be monitored and the tag sample rate, etc.

“The OPC UA Embedded

Server SDK from MatrikonOPC

is a simple single threaded

implementation that runs in a

single RTOS task or in a bare

metal environment. ”

4. Ease of Integration

The Issue: As stated previously, OPC UA is a large and complex standard.
When integrating advanced technology into your product there are a number
of questions you need to ask yourself. What architectural demands does
the technology place on my product? Do I need to change my software
architecture in major ways in order to achieve integration? Is it compatible
with my existing infrastructure such as my TCP/IP stack and variable
database?

The Solution: An ideal solution will hide the complexity from the application
developer and easily slot in to your existing software framework regardless of
how bespoke it may be. The OPC UA Embedded Server SDK from MatrikonOPC
is a simple single threaded implementation that runs in a single RTOS task
or in a bare metal environment. Integration is as easy as hooking up a small
number of API function calls to your application. Minimal changes are required
so you don’t have to waste time modifying software unnecessarily.

*Metrics obtained for using GCC -O3

100
continuously

changing tags

1,000
continuously

changing tags

Hardware
CPU

Utilization (%)* Test Conditions

Sampling
& reporting

every 100ms

Sampling
& reporting

every 100ms

ARM Cortex-M4F
(STM32F407)
@ 168MHz

12.50

ARM Cortex-A8
(AM3359)
@ 1GHz

31.00

Table 2 - Typical Server Performance

*Metrics obtained for ARM Thumb2 instruction set (Cortex-M4F), GCC -Os

Configuration Flash (kB)* RAM (kB)

Nano Embedded Device Server Profile

Micro Embedded Device Server Profile

Micro Embedded Device Server Profile
(with full type information model)

240

265

370

35

65

65

Table 1 - Minimum Server Footprint

5. Reliability

The Issue: With any embedded system whether writing software from
first principles or integrating third party IP, quality is absolutely critical.
An unreliable and/or underperforming product can damage your brand’s
reputation and cost you market share. While subsequent fixes are possible
via firmware upgrades – they are inconvenient and costly for your customers.
Reliability is not just a result of doing things well; you also have to do the right
things. Take memory management for example. In a PC based environment
it is quite normal for software developers to allocate software data structures
on the “heap” or “free store”. This is known as dynamic allocation. While
an ideal approach on the desktop, this approach does not scale well when
applied to resource constrained environments. When device memory is limited
and software relies on heap based allocation bad things can happen. The
most obvious problem is heap exhaustion whereby the program simply runs
out of memory during normal operation. A lesser known problem is heap
fragmentation whereby there is sufficient memory available but it becomes
so fragmented over time that there is no sufficiently large block of memory
available to service a particular memory allocation. In both such cases, the
application cannot continue to perform its intended task.

The Solution: A properly written OPC UA embedded server SDK uses a
special memory model that avoids heap exhaustion and fragmentation from
occurring regardless of how many years the device runs. Given the nature of
industrial processes and their need for dependable up-time - this needs to be a
key characteristic of the embedded OPC UA library you choose to put into your
product.

Using an OPC UA Embedded Server SDK that has been independently certified
by the OPC Foundation is a key way to ensure that you are using a high
quality SDK. For this reason you should insist on only using components that
have been independently certified. The OPC UA Embedded Server SDK from
MatirkonOPC was the first OPC UA SDK to be certified as being compliant by
the OPC Foundation (August 2011).

CONCLUSION

The demand for control automation products that are easy to integrate into
a company’s data sharing infrastructure is on the rise. OPC UA, the latest
generation of the world’s most popular open data connectivity standard
allows for OPC UA servers to run on virtually any platform or OS – including
embedded applications. By using a high quality OPC UA Embedded Server
software development kit from MatrikonOPC – you can quickly add value to
your industrial electronic devices while avoiding five common development
challenges.

“A properly written OPC UA

embedded server SDK uses

a special memory model that

avoids heap exhaustion and

fragmentation from occurring

regardless of how many

years the device runs. ”

Copyright © Matrikon Inc 2013

Toll Free 1-877-MATRIKON (1-877-628-7456)
Ph: +1 (780) 945-4099

Email: info@MatrikonOPC.com
Web: www.MatrikonOPC.com

Americas Asia-Pacif ic Europe Middle East Afr ica

“MatrikonOPC OPC UA

Embedded Server SDK enables

your devices to directly connect

to the enterprise with native

OPC UA connectivity.”

“Add real value to your

product by enabling direct

point and click configuration,

management and monitoring

from any OPC UA Client.”

OPC COMPOMENTS DESCRIBED IN THIS PAPER

MATRIKONOPC OPC UA EMBEDDED SERVER
SOFTWARE DEVELOPMENT KIT (SDK)

The OPC-UA Embedded Server SDK from MatrikonOPC is a software
development kit that allows you to quickly and easily add an OPC UA Server
to your embedded product. Our scalable, standards based SDK can be
integrated into every class of device, from discrete sensors and actuators
to programmable controllers and beyond. Add real value to your product by
enabling direct point and click configuration, management and monitoring
from any OPC UA Client.

SCADA

SCADAHMI Historian

ERPTrendingEnterprise
Historian

O
P

C
 U

A

O
P

C
 U

A

P
C

 B
as

ed
 O

C
P

 U
A

MES

Control Network

Operations Network

Business Network
E

m
b

ed
d

ed
 O

P
C

 U
A

MatrikonOPC OPC UA Embedded Server Software Development Kit (SDK)
Use the MatrikonOPC OPC UA Embedded Server Software Development Kit (SDK) to enable your device to
directly connect to the enterprise with native OPC UA connectivity.

Embedded
OPC UA Servers PLC Smart

Sensor
DrivesVision

Systems

����

�������

������
�������

������

